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bstract

Powder mixing has been the subject of substantial research due to its importance in a variety of industrial sectors, including pharmaceuticals,
ood, and polymer manufacturing. Although a number of different models have been proposed in the literature, most of them are either empirical

r require computationally intensive calculations that make them difficult to implement for realistic systems. The aim of this paper is to develop
simplified framework, based on compartment modeling that efficiently and accurately captures the system behavior. Using the V-blender as a
odel system, the compartment modeling approach was used to illustrate the effects of vessel loading on mixing as well as the impact of sampling
ethods on the accuracy of mixing characterization.
2006 Elsevier B.V. All rights reserved.
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. Introduction

Many industrial sectors rely heavily on granular mixing to
anufacture a large variety of products. In the pharmaceuti-

al industry, it is very important to ensure homogeneity of the
roduct. The pharmaceutical industry is one of the most rep-
esentative examples, where homogeneity is very important to
nsure product quality and compliance with strict regulations.
odeling can play an important role in improving mixing pro-

ess design by reducing mixing time as well as manufacturing
ost, and ensuring product quality. The main difficulty in mod-
ling powder-mixing processes is that granular materials are
omplex substances that cannot be characterized either as liquids
r solids (Jaeger and Nagel, 1992). Moreover, granular mixing
an be described by multiple mixing regimes due to convection,
ispersion, and shear (Lacey, 1954). Fan et al. (1970) reviewed
number of publications where powder mixing is modeled in an
ttempt to reduce the production cost and improve product qual-
ty. Although a complete literature survey is outside the scope
f this paper, we will review the most relevant models in this

ntroduction section.

The existing approaches used to simulate granular material
ixing processes can be categorized as (1) heuristic models,
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2) models based on kinetic theory, (3) particle dynamic simu-
ations, and (4) Monte Carlo simulations (Ottino and Khakhar,
000). Geometric arguments and ideal mixing assumptions are
ome common features of heuristic models. Although these
odels can generate satisfactory results, they are restricted to

atch processes and are case dependent (Hogg et al., 1966; Thýn
nd Duffek, 1977). Kinetic-theory-based models are used to
imulate mixtures of materials with different mechanical prop-
rties (size, density and/or restitution coefficient), where each
article group is considered as a separate phase with different
verage velocity and granular energy. These models typically
ddress shear flow of binary and ternary mixtures based on the
inetic theory of hard and smooth spherical particles (Jenkins
nd Savage, 1983; Iddir et al., 2005; Lun et al., 1984). The main
hortcoming of these models is that they focus on the micro-
copic interactions between particles, neglecting the effects due
o convection and diffusion.

Particle dynamic simulations, which apply molecular
ynamic concepts to study liquids and gases, are extensively
sed to simulate powder mixing (Zhou et al., 2004; Yang et
l., 2003; Cleary et al., 1998). The main limitations of particle
ynamic simulations are (a) the maximum number of particles
equired to model the system is restricted due to the computa-

ional complexity of the involved calculations, and (b) the lack
f realistic particle morphology.

Monte Carlo (MC) simulations begin with an initially ran-
om configuration, which is driven to an energetically feasible

mailto:marianth@sol.rutgers.edu
dx.doi.org/10.1016/j.ijpharm.2006.03.051
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quilibrium. One limitation of such an approach is that it can-
ot provide information about time-dependent characteristics,
ince it does not follow a realistic dynamic trajectory (Steinbach,
005).

In order to model granular mixing processes accurately and
fficiently, in this paper we explore compartment modeling.
ompartment modeling has been utilized in bioprocesses to

tudy the effects of mixing in large-scale aerated reactors (Vrábel
t al., 1999) and stirred reactors (Cui et al., 1996) with satisfac-
ory results (both qualitatively and quantitatively). Curiously,
his approach has not been used to model powder mixing. The

ain idea of compartment modeling is to spatially discretize the
ystem into a number of homogeneous subsections containing a
xed number of particles. Discretizing also the time domain, a
umber of particles are allowed to flow from each compartment
o the neighboring ones at each time step. The main advantages
f compartment modeling are that (a) it incorporates all associ-
ted forces responsible for particle movement within the vessel,
sing a flux term that can be experimentally determined and (b)
t allows the simulation of a large number of particles. Although
he exact particle position cannot be determined the changes in
omposition can be captured by including the flow of particles
ntering and exiting each compartment.

In this paper, the aim is to demonstrate that compartment
odeling can be used to characterize powder mixing. The paper

s organized as follows. Section 2 describes the central concepts
f compartment modeling and how it is used here to model a V-
lender, which is used as a case study. Section 3 illustrates how
ompartment modeling is used to elucidate the effects of initial
oading on the mixing process, and determine the optimal sam-
ling protocol including the sampling locations, the number of
amples, the number of particles per sample, and sampling time.
inally Section 4 presents the main conclusions and discusses
uture work directions.

. Compartment modeling

Compartment modeling has been effectively used to model
he mixing of fluids in reactors to incorporate micro-mixing
ffects. Correa (1993) and Shah and Fox (1999) have utilized

his idea to model turbulence in chemical reactors. Specifically,
he fluid is represented by a large number of particles. At each
ime step a certain number of particles enter the reactor, while
articles randomly selected from the ensemble exit the reactor at

3

i

Fig. 1. (a) A discretized V-blender (b) c
of Pharmaceutics 320 (2006) 14–22 15

he same mass flowrate. The interactions between particles are
epresented by random collisions based on the mixing regime.

Compartment modeling of solid mixers is applied by spa-
ially discretizing the system into a number of subsections that
re assumed to be perfectly mixed locally (in good agreement
ith experimental observations) and contain a stipulated num-
er of particles. By also discretizing the time domain, a number
f particles are allowed to flow from each compartment to the
eighboring ones at each time step defining the particle flux, F.
he number of particles transferred account for the convective
nd dispersive mixing occurring throughout the vessel. Follow-
ng the ideas of Fan et al. (1970), who described solid mixing as
random process, the particles selected to enter and leave each
ompartment are randomly selected. The change in the num-
er of particles of species j, in compartment i, at time step k, is
enoted as �φijk. All of the particles in the entire mixer are rep-
esented by the sum of all the interconnected compartments (w).
hus, the change in each species j throughout all compartments
t every time step must equal zero as dictated by Eq. (1):

w

i=1

�φijk = 0 (1)

Compartment modeling can in principle be applied to any
ixing process as long as there is enough information regarding
uxes to identify different mixing regimes, define the number
f compartments needed, and model the particle flux between
eighboring regions. A V-blender is considered in this paper
s an illustrative case study (Fig. 1a). The V-blender rotates
round the x-axis from the upright position to the downward
osition. The details of the process are given in Brone et al.
1998). Following the experimental observations of Brone et al.
1998), this blender can be modeled with five compartments as
hown in Fig. 1b. We identify each compartment as V1, V2, V3,
4, and V5. The particle flux between compartments V1 and V2

s defined as F1, and the flux between V2 and V3 is defined as
2, as illustrated in Fig. 1b.

. Mixing analyses
.1. Vessel composition (initial load)

Several studies show that mixing performance can be
mproved by perturbing the symmetry of the mixer (Cahn et

ompartment model of V-blender.
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trated in Fig. 3, which shows the variance of the composition of
samples as a function of time.

As shown in Fig. 3, we significantly decrease the mixing
time by varying the initial load distribution. The mixing time
6 P.M. Portillo et al. / International Jou

l., 1965; Chang et al., 1992; Chang et al., 1995; Brone et al.,
991). However, since this is not always a viable option for
ndustrial scenarios, we examine the effects of initial loading.
t is well known from experiments that initial loading can sub-
tantially affect the mixing process (Brone and Muzzio, 2000).
hus, the main focus of this section is to change the initial distri-
ution of the ingredients in the vessel and examine the resulting
ariance profiles as a function of time. We compute the effects
f initial concentration distribution on mixing time, defined as
he time required to reach a homogenous state. The degree of
omogenization, quantified by concentration variance, is used
o characterize mixing.

The systems studied here consist of two groups of particles
aving different physical attributes such as chemical identity,
ize, and color. For the present analysis, a specific concentra-
ion is attributed to each particle group, such that the number of
articles within each compartment determines the mixture con-
entration. Hence, in our study, one group of particles belongs
o group 1 and another group of particles belong to group 2. At
very time point, 100 samples from each of the five compart-
ents are considered, each having 200 particles (the effects of

ampling parameters will be discussed in the next section). In
rder to reflect blender symmetry, F1 = F4 and F2 = F3 (Fig. 1b).
rone et al. (1998) showed that the main barrier to mixing in a
-blender is the axial flow of particles across the vertical plane of
ymmetry perpendicular to the V-blender. Thus, in order to bet-
er represent geometric characteristics of this vessel, we assume
hat F2 < F1 and F3 < F4; i.e., F3 and F2 correspond to the low-
st particle flux, the compartment they affect is compartment
3, which is considered the slowest mixing region (in compari-

on to all the other compartments). As a case study, the particle
ux is set to 1000 particles per time step between compartments
1–V2 and V4–V5 (i.e., F1 = F4 = 1000 particles per time step).
he flux between V2–V3 and V3–V4 is F2 = F3 = 100 particles
er time step. The resulting mixing behavior is illustrated using
he variance of the system, σ2, calculated using Eq. (2).

2 =
∑ (xi − x̄)2

n − 1
(2)

here xi is the concentration of sample i; x¯ is the mean of sample
oncentrations; and n is the number of samples.

In order to investigate the effects of initial loading, we ana-
yze two systems with the same composition, i.e., they both
ontain the same total number of particles for both groups 1
nd 2. As mentioned above, we are using 1 million particles
n our study, and distribute evenly 200,000 particles through-
ut each compartment. Although the total number of particles
ithin a vessel may be constant, the initial distribution of each

ype of particle may vary. For example, consider system A and
ystem B, shown graphically in Fig. 2a and b, respectively. The
umbers within the compartment represent the composition per-
entage of particles pertaining to group 1. For example, system

has compartment V1 with 50% group 1 and 50% group 2,

hat means 100,000 particles of group 1 and 100,000 particles
f group 2 initially exist within this compartment. Compartment
2 contains 100% of group 2, which signifies 200,000 particles
f group 2 initially exist within this compartment. On the other

F
l

ercentages within the compartment represent the percentage composition of
articles pertaining to group 1.

and, case B has 200,000 particles of group 2 within vessel V1,
nd 100,000 particles of group 1 and 100,000 particles of group
f 2 within vessel V2. Although both cases have the same com-
osition (200,000 particles of group 1 and 800,000 particles of
roup 2), the initial particle arrangement throughout the vessel
aries. Additional distributions that have the same composition
re used for system C and system D, shown graphically in Fig. 2c
nd d. The subsequent mixing behavior of these systems is illus-
ig. 3. Unbiased variance as a function of time steps for five cases with different
oading compositions as well as experimental data from Brone et al. (1998).
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Table 1
The 95% confidence interval of variance for the histogram of the variance fre-
quencies for cases A–D for time steps [15,000, 20,000]

Case Variance confidence interval ∆

A [8.98E-04, 6.99E-04] 1.99E-04
B [1.09E-04, 4.76E-05] 6.16E-05
C
D
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In this study, the uniform sampling scheme (Scheme C, of
Fig. 4) is used as the standard for the variance distribution.
[9.12E-04, 7.08E-04] 2.03E-04
[9.16E-04, 7.11E-04] 2.05E-04

or system B is much lower than for system A. Thus, we
onclude that system B exhibits superior mixing performance
han system A. System B improves mixing because the
nitial load distribution of group 1, the material in the lowest
oncentration is closer to compartment V3. Compartment
3 is the slowest mixing area of the mixer, and since for

ystem B the material distributes earlier throughout compart-
ent V3 than system A, and scheme B reaches equilibrium

ooner.
In order to further investigate the effects of initial load

istribution, two additional cases are studied, cases C and D,
hown in Fig. 2c and d. Fig. 3 shows that system C results in
lower mixing compared to systems A and B. This is interesting
ecause case C has the most uniform initial distribution of
articles pertaining to group 1, since it is initially dispersed
hroughout three compartments. However, the initial distribu-
ion is not dispersed throughout the compartments. This points
o the fact that mixing time is strongly correlated to the initial
oad distribution. The highest mixing time of the examined
ases is shown by case D, where particles pertaining to group 1
re loaded to only one area of the mixer. To further illustrate the
ffects of initial loading, a 95% confidence interval of variance
s calculated for all cases and shown in Table 1. The results illus-
rate that case B has the narrowest variance confidence interval
hereas case D has the widest variance confidence interval. As a

esult of changing the initial load distribution, the time required
o reach homogeneity is reduced or increased as shown in
ig. 3.

The mixing performance of a V-blender was studied by Brone
t al. (1998) given an initial load distribution. The experiment
onsists of two groups of particles, the materials are loaded sym-
etrically that is one side to the vertical plane of symmetry

erpendicular to the V-blender is loaded with particles of group
and the other side with particles of group 2. This system is

imulated by case E (Fig. 2e) and the results compared with
he experimental results in Fig. 3. We load 200,000 particles of
roup 1 in compartments V1 and V2 and 100,000 particles of
roup 1 in compartment V3 whereas 200,000 particles of group
are loaded in compartments V4 and V5 and 100,000 particles

f group 2 in compartment V3. The experimental results plotted
n Fig. 3 from Brone et al. (1998) are obtained using one sample
ith 140 particles. The homogeneity of the vessel as a function
f discrete time is plotted for the simulation and experimental

tudies. They both exhibit similar variance profiles. Variations
rise due to the limited number of samples taken under exper-
mental conditions as well as the inaccuracy that arises from
ampling.
of Pharmaceutics 320 (2006) 14–22 17

.2. Sampling

The most common technique used to characterize a mixture
s sampling. In order to properly characterize a mixing process,
he sampling parameters (sampling locations, sample size, num-
er of samples, and sampling time) must be carefully chosen to
rovide accurate information. In this section, compartment mod-
ling is used to elucidate the role of sampling parameters on the
haracterization of mixing performance.

.2.1. Sampling locations
An important consideration when sampling is the sampling

ocation. As pointed out by Allen (1981), the two “golden rules”
f powder sampling are that: (1) a powder is sampled only when
n motion, and (2) a sample be collected uniformly from the
ntire process stream. Guidelines elucidate the importance of
ampling uniformly throughout the mixer. However, most pro-
ess analytical technology (PAT) approaches to-date sample the
lender at a single location.

In this section, we examine the effects on variance of sam-
ling at different locations within a mixing system. Initially,
e examine three of the sampling schemes shown in Fig. 4

Schemes A–C). Scheme A retrieves samples from only the mid-
le compartment V3, scheme B retrieves two compartments, one
t each end (V1 and V5), and scheme C uniformly retrieves sam-
les from each compartment (V1 through V5). Fig. 5 shows that
sing a single sampling location (Scheme A, of Fig. 4) in the cen-
er compartment severely underestimates the variance whereas
wo sampling locations (Scheme B, of Fig. 4) overestimates the
ariance. In order to monitor the accuracy among the sampling
chemes we develop an optimization model where the objec-
ive is to minimize the sum of the squared difference between
he variance for the uniform sampling scheme (Scheme C, of
ig. 4), σ0, and the variance of the sampling scheme used, i, for
comparisons as shown in Eq. (3):

=
n∑ (σ0 − σ)2

(3)
Fig. 4. Four sampling location distribution possibilities (schemes A–D).
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Fig. 6. Normalized variance histogram for (a) 200 particles/sample, (b)
400 particles/sample, and (c) 600 particles/sample for the time interval
[15,000–20,000].

Table 3
The 95% confidence interval of variance for the variance frequency histograms
of sample sizes 200, 400, and 600 particles per sample for the time interval
[15,000, 20,000]

Particles per sample Variance confidence interval ∆ interval

200 [1.81E-03, 7.86E-04] 1.03E-03
4
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In terms of computational feasibility, using compartment
models leads to very efficient calculations as shown in Table 4.
ig. 5. Variance as a function of time steps for the four sampling possibilities
schemes A–D).

he variance difference between the standard and the sampling
cheme chosen indicates the variance error. The smaller the vari-
nce error, the closer the sampling scheme represents the results
f the uniform sampling scheme. The results show that case A
as the largest variance error (Table 2) whereas case B has a
uch smaller objective function than case A, and as a result

etter approximates the variance distribution.
Since in most practical cases there exists a limit in the num-

er of sampling locations that are used (i.e., 2–10), we again
se a compartment model to determine the optimal sampling
ocations. Thus, given a constraint that only two sampling loca-
ions are allowed, the question addressed in this section is where
amples should be retrieved. Considering a limiting number of
ampling locations (i.e., 2), two alternatives are further inves-
igated as depicted in Fig. 4 (Scheme B, and D). As shown in
ig. 5, these two schemes result in widely different variance esti-
ates. Scheme B shows a higher variance than scheme D before

quilibrium is reached. However, based on the objective func-
ion results (Table 2), scheme B is closer to the uniform sampling
esults than scheme D. If the aim is to characterize the variance
f the system as accurately as possible, the goal is to mini-
ize J and scheme B should be favored. Thus as illustrated by

hese results, sampling location is important, since distributing
he same number of sampling locations differently shows dra-

atically diverse results. Given that there exists a large number
f sampling alternatives, compartment models offer an effective
ay of selecting the best sampling location for a specific system.
.2.2. Sample size
In pharmaceutical applications, the size of a single tablet is

sually the scale of scrutiny where it is critical to ensure that
he active ingredient is well mixed (Muzzio et al., 2004). Hence,

able 2
he objective function results for sampling location schemes A, B, and D

cheme J

6.2750
0.0349
0.6382

T

T
C

N

2
4
6

T
c

00 [9.37E-04, 3.96E-04] 5.41E-04
00 [6.65E-04, 2.68E-04] 3.97E-04

n ideal number of particles in a sample should be equal to the
umber of particles in a tablet. However, this is not always pos-
ible and obtaining a microscopic sample can result in greater
naccuracy due to measurement errors, especially when using
hief probes (Muzzio et al., 2003) to perform the sampling. To
nderstand the effects of sampling methodology, the actual rela-
ionship between sample size and variance is further examined
n this section.

Consider the system in Fig. 2e (case E), we assume three
ifferent sample sizes (200, 400 and 600 particles per sample).
n all cases, 50 samples are used and selected randomly at each
ime step and an equal number of samples are retrieved from
ach compartment. Although variance behavior over time is sim-
lar in all three cases (closely overlapping variance profiles),
arger samples result in narrower variance distributions (Fig. 6
nd Table 3). The results confirm that increasing the number
f particles within each sample decreases the sample-to-sample
oncentration variability.
he CPU times for the three cases examined are on a SUNW

able 4
omputational results for three different sample sizes

umber of particles per sample CPUa (s) Number of iterations

00 8084 10000
00 8093 20000
00 8692 30000

he table includes the number of iterations within sampling section of the Fortran
ode.
a SUN Blade 2000.
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average variance decreases. Variance is indirectly related to the
skewness of the χ2 distribution. As shown in Fig. 9, the skewness
of the variance frequency increases as the number of samples
increase.
ig. 7. Unbiased variance as a function of time steps for four sample sizes for
ystem E.

PARC Desktop (2) 900 MHz Processors 2 GB and our compart-
ent modeling code is written in FORTRAN. When we increase

he number of particles per sample from 200 to 600, the simula-
ion takes 600 CPU s longer to run due to increased number of
terations required to achieve convergence. Although increasing
he sample size increases the CPU time due to additional calcu-
ations, the simulation time remains within a feasible range in
omparison to existing mixing models.

Analytical methods, such as near infrared (NIR) spectrome-
ry, use a small number of particles in each sample (Berntsson
t al., 2002), hence raising concerns about small sample sizes.
o further examine the effect of sample size, we explore cases

nvolving extreme sample sizes.
Thus, the same system is analyzed with the following four

ampling sets: two particles per sample, four particles per sam-
le, eight particles per sample, and sixteen particles per sample.
he number of samples taken is adjusted to keep a constant
umber of particles retrieved within one time step. Fig. 7 shows
different variance profile for all the samples. As expected,

ampling an identical system with more numerous but smaller
amples results in a larger variance than if sampled with fewer
ut larger samples. As shown in Fig. 7, once the system reaches
he final mixed state, the final variance value is non-zero. The
igher the final variance value, the greater the variance at a mixed
tate. Thus, although our system is identical, each sample set dis-
lays a different final variance value. This is especially important
iven that in order to satisfy the existing manufacturing crite-
ia (FDA, 2003), the relative standard deviation (R.S.D.) value
hould be less than 4.0% to be “readily passing” and less than
.0% to be “marginally passing” (Many of the samples in Fig. 7
ill not satisfy even the marginally passing criteria.). In order

o capture the variance as a function of sample size for a given
ystem, we analyze the minimum variance attainable for several
ifferent sample sizes of a given system. As shown in Fig. 8, in
greement with the Central Limit Theorem, the minimum vari-

nce is inversely proportional to the sample size. Consequently
s illustrated with the results in this section, the variance of
he system can display a large range of values depending on
he sample size. Hence, setting a measurement requirement for

F
a

Fig. 8. Minimal variance profiles as a function of particles per sample.

omogeneity (such as σ ≤ 4–6%) is ambiguous unless sampling
arameters are defined. Thus, selection of the appropriate sam-
le size is very important, especially for PAT methods that in
ractice sample very small amounts of material.

.2.3. Number of samples
In the previous section, a small number of samples were con-

idered for all the calculations. In this section, we investigate
he selection of the number of samples. For the same system, we
ary the number of samples used to determine the variance. The
im is to minimize the number of samples required to charac-
erize mixing in order to reduce the adverse impact of invasive
ampling (Muzzio et al., 1997). To that end, we monitor the
ariance evolution for three identical systems, while varying the
umber of samples for each system. Each case is as follows: from
ase 1 we take 100 samples, from case 2 we take 200, and from
ase 3 we take 500 samples; each sample with 200 particles. No
ubstantial difference in variance between these three systems
s observed (closely overlapping variance profiles). However,
he variance frequency reveals that increasing the number of
amples leads to a narrower distribution (Fig. 9 and Table 5)
hat visibly approaches a χ2 (chi-square) distribution. It is also
mportant to mention that as the number of samples increase, the
ig. 9. Normalized variance histogram for (a) 100 samples, (b) 200 samples,
nd (c) 500 samples.
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Table 5
The 95% confidence interval for the variance frequency histograms for 100, 200,
and 500 samples at the time interval [15,000, 20,000] time steps

Number of samples Variance confidence interval ∆ interval

100 [1.67E-03, 9.35E-04] 7.31E-04
200 [1.56E-03, 1.04E-03] 5.22E-04
500 [1.47E-03, 1.13E-03] 3.49E-04

Table 6
Compartment modeling computational results for 100, 200, and 500 samples

Number of samples CPUa (s) Number of iterations

100 8026 20000
200 8636 40000
500 9859 100000
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he table includes the number of iterations within sampling section of the Fortran
ode.
a SUN Blade 2000.

Increasing the number of samples does require additional cal-
ulations, causing an increase in computational intensity. The
dditional samples prolong the simulation by 1800 CPU s (see
esults in Table 6). This may be a feasible time period consider-
ng the time length of other mixing models.

Since the number of samples is often minimized, it is impor-
ant to consider the effects of a small number of samples. Thus,
he following cases are considered for a constant number of parti-
les: 5 samples of 4000 particles per sample, 10 samples of 2000
articles per sample, 20 samples of 1000 particles per sample,
nd 40 samples of 500 particles per sample. Although these cases
howed similar variance behavior (closely overlapping variance
rofiles), the histograms evaluated for the time period between
5,000 and 20,000 time steps (Fig. 10) show that a small number
f samples are not sufficient to represent the χ2 distribution. A
mall subset of it will have a different frequency distribution than
he parent group. As the samples increase, the frequency distri-
ution more closely resembles that of the large data set. χ2 can
e used to determine what sample size will provide a reasonable
pproximation of the larger set. Thus, a small number of samples

ay not sufficiently represent the homogeneity of the system as

eported by Fan et al. (1970). A contour plot is used to illustrate
he relationship between the variance the number of samples, and

ig. 10. Normalized variance histogram obtained for: (a) 5 samples, (b) 10
amples, (c) 20 samples, and (d) 40 samples.
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ig. 11. Surface contour graph for two sampling variables (number of samples,
umber of particles per sample) as a function of variance.

he number of particles per samples as shown in Fig. 11. It can be
oted from this plot that the smallest variance is obtained for the
argest number of particles within the sample. Although increas-
ng the number of samples also reduces the variance it is found
hat the number of particles per sample is the most effective
actor.

The results illustrate some of the existing problems with prod-
ct specifications. One problem is that setting a measurement
equirement for homogeneity (such as σ ≤ 4–6%) is ambiguous
nless sampling parameters are defined. Secondly, the homo-
eneity of the mixture is not solely dependent on the mean vari-
nce, since the significance of the mean variance is dependent
n the variance distribution as well as the confidence intervals.
hese confidence intervals are affected by the sampling set and
lthough a homogenous mixture is present, an incorrect sam-
ling basis will not distribute the variance as a larger sample set
ould.

.2.4. Sampling time
Determining when the mixture has reached homogeneity is

bviously important. The focus of this section is to define when
omogeneity is reached in order to determine when samples
hould be retrieved. To investigate the effects of this parame-
er, we analyze the variance distributions at several time inter-
als. As shown in the prior variance distributions, homogenous
amples (uniform datasets) distribute variance as a χ2 distri-
ution, given the appropriate sampling parameters. However,
on-homogenous samples (non-uniform dataset) do not neces-
arily distribute the variance as a χ2 distribution; this can further
e read on BookRags (2006). As shown in Fig. 12, sampling at
arly time intervals results in variance distributions that deviate
ignificantly from χ2 distributions. This possess serious chal-
enges to developing useful estimates of “goodness of fit” of
easured values of σ2.
Quantitatively, we use the χ2 test to characterize mixing over

ime as proposed by Gayle et al. (1958). The χ2 test is evaluated
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Fig. 12. Variance histogram at the following time intervals: (a) 1–100

s follows:

2 =
∑ (NO − NE)2

NE
(4)

here NO, is the observed number of particles of a given physi-
al attribute such as chemical identity, size, and color in a sample
nd NE, is the expected number of particles in the mixture of the
iven physical attribute. When the mixture reaches a homoge-
ous state, the χ2 value reaches the lower limit. The lower limit
s equal to the number of different components times the number
f samples. In this case study, two components exist (parti-
les pertaining to group 1 and 2) and 500 samples are taken
ithin the mixture, so the lower limit is 1000. Table 7 illus-

rates the χ2 values at different time steps. The results show

2 reaches the lower limit before the sample time has reached
5,000. Sampling early can be prevented by utilizing a com-
artment model that predicts when χ2 has reached the lower
imit.

n
e
v
t

able 7
hi-square results at varying time steps

ample time Number of particles labeled with 1 at each compartment

1 2 3

5000 130348 128956 100060
0000 108896 108406 100245
5000 102367 102870 100150
0000 101031 101099 99784
5000 100362 100024 100062
0000 100141 100165 100105
201–300, (c) 401–500, (d) 601–700, (e) 801–900, and (f) 901–1000.

. Conclusions

In this paper a powder mixing process is simulated based on
ompartment modeling. The main advantage of the proposed
pproach is that the computational time is significantly reduced,
llowing the simulation of a large number of particles. A V-
lender is considered as a case study blender and simulated
sing the proposed compartment model. In terms of variance,
he effects of the sample location, number of samples, parti-
les within the sample, and sampling time are examined. It
as shown that initial loading could substantially increase the

equired mixing time to reach a homogenous state. With respect
o sampling, it was first determined that a small number of par-
icles overestimate the variance of the system. Second, a large

umber of samples decrease the variance histogram width at
quilibrium. Third, sampling locations can dramatically offset
ariance distributions. Finally, sampling early will not exhibit
he variance histogram as a χ2 distribution.

χ2

4 5

71271 69365 35230
91624 90829 3041
97391 97222 284
98878 99208 42
99597 99955 3.0
99810 99779 1.4
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Utilizing compartment models we characterize the mixing
ehavior of several mixing processes under several different
ampling conditions. The integration of these models to exist-
ng powder mixing processes can reduce any misrepresentation
f variance profiles as well as improve mixing performance.
uture work will target the development of a hybrid model
etween compartment model and detailed Discrete Element
ethod (DEM).
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hýn, J., Duffek, K., 1977. Powder mixing in a horizontal batch mixer.
Powder Technol. 15, 193.
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